Differences between detour and Wiener indices
نویسندگان
چکیده
Let G be a connected graph and let μ(G) = DD(G) − W (G), where DD(G) and W (G) stand for the detour and Wiener numbers of G, respectively. Nadjafi-Arani et al. [Math. Comput. Model. 55 (2012), 1644– 1648] classified connected graphs whose difference between Szeged and Wiener numbers are n, for n = 4, 5. In this paper, we continue their work to prove that for any positive integer n = 1, 2, 4, 6 there is a graph with μ(G) = n.
منابع مشابه
Relation Between Wiener, Szeged and Detour Indices
In theoretical chemistry, molecular structure descriptors are used to compute properties of chemical compounds. Among them Wiener, Szeged and detour indices play significant roles in anticipating chemical phenomena. In the present paper, we study these topological indices with respect to their difference number.
متن کاملOn Varieties of Reverse Wiener Like Indices of a Graph
Abstract. In this paper Reverse Wiener index, Reverse Detour Wiener index, Reverse Circular Wiener index Reverse Harary index, Reverse Detour Harary index, Reverse Circular Harary index, Reverse Reciprocal Wiener index, Reverse Detour Reciprocal Wiener index, Reverse Circular Reciprocal Wiener index, Reverse Hyper Wiener index, Reverse, Detour Hyper Wiener index, Reverse Circular Hyper Wiener i...
متن کاملOn edge detour index polynomials
The edge detour index polynomials were recently introduced for computing the edge detour indices. In this paper we find relations among edge detour polynomials for the 2-dimensional graph of $TUC_4C_8(S)$ in a Euclidean plane and $TUC4C8(S)$ nanotorus.
متن کاملOn terminal wiener indices of kenograms and plerograms
Whereas there is an exact linear relation between the Wiener indices of kenograms and plerograms of isomeric alkanes, the respective terminal Wiener indices exhibit a completely different behavior: Correlation between terminal Wiener indices of kenograms and plerograms is absent, but other regularities can be envisaged. In this article, we analyze the basic properties of terminal Wiener indices...
متن کاملThe explicit relation among the edge versions of detour index
The vertex version of detour index was defined during the works on connected graph in chemistry. The edge versions of detour index have been introduced ecently. In this paper, the explicit relations among edge versions of detour index have been declared and due to these relations, we compute the edge detour indices for some well-known graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 59 شماره
صفحات -
تاریخ انتشار 2014